

Algorithmically
Composed Music

By: James G. Cialdea, Jr

Sufficiency Course Sequence:
MU1611 – Fundamentals of Music I – A 2005
MU2611 – Fundamentals of Music II – B 2005

MU3001 – World Music – D 2006
 MU3611 – Computer Techniques in Music – A 2006

MU3613 – Digital Sound Design – B 2006
MU3612 – Computers and Synthesizers in Music – D 2007

Submitted to Professor David Linnenbank
WPI Department of Humanities and Arts
Thursday, April 26, 2007 - D Term 2007

Project Number: DL2-MU-07

Submitted in Partial Fulfillment of the Requirements of
The Humanities & Arts Sufficiency Program

Worcester Polytechnic Institute Worcester, Massachusetts

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 1

Table of Contents
Table of Contents ___ 1

1. Introduction ___ 2

2. Development___ 3
2.1 Duel-Basic __ 3
2.2 Duel-Metro ___ 3
2.3 Multi-Line-Metro __ 5
2.4 Multi-Line-Metro2 ___ 5
2.5 Multi-Line-Metro-Pitch___ 5
2.6 Multi-Line-Metro-Pitch-Velo __ 6

3. Conclusion __ 7

A-1. Key Terms Explained__ 8

A-2. Max Patch Diagrams __ 9
A-2.1 Duel-Basic__ 9
A-2.2 advmetro__ 10

A-2.2.1 Without Triplets __ 10
A-2.2.2 With Triplets___ 11

A-2.3 Duel-Metro __ 12
A-2.4 randline – as used in Multi-Line-Metro___________________________________ 13
A-2.5 Multi-Line-Metro___ 14
A-2.6 randline2 – as used in Multi-Line-Metro2_________________________________ 15
A-2.7 Multi-Line-Metro2__ 16
A-2.8 pitchselect ___ 17
A-2.9 pitchselect2 __ 18

A-2.9.1 Table major__ 19
A-2.9.2 Table minor__ 19

A-2.10 randline4 - as used in Multi-Line-Metro-Pitch ____________________________ 20
A-2.11 Multi-Line-Metro-Pitch___ 21
A-2.12 veloselect ___ 22

A-2.12.1 Using Single Values for Each Event Type _____________________________________ 22
A-2.12.2 Using Multiple Values for Each Event Type Based on Beat _______________________ 23

A-2.13 randline6 - as used in Multi-Line-Metro-Pitch-Velo _______________________ 24
A-2.14 Multi-Line-Metro-Pitch-Velo __ 25
A-3. CD Contents __ 26
A-3.1 Audio CD ___ 26
A-3.2 Data CD __ 26

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 2

1. Introduction
The goal of the project was to create a system that would compose music algorithmically,
without the help of artificial intelligence practices. Originally, the system was expected
to create music in a specific style, but through some research, it became clear that this has
already been done very well. One such system is “Sharle”, which was created in 1996 by
Chong Yu at MIT as a master’s thesis.1 Full source code is available2 so there was no
sense repeating Yu’s process. David Cope, currently a professor of Music at the
University of California at Santa Cruz, has also done a tremendous amount of work with
algorithmically composed music following a given style. He has been working on
composition systems for over 15 years and has perfected many different methods, most of
which use artificial intelligence very heavily.3 After finding that these systems have
already been developed and work much better than anything that could be created within
this project’s seven-week time constraint it was decided that the project should allow the
system to create its own style by only enforcing basic music theory rules.

The system, called MLMPV, which stands for “Multi-Line, Metronome, Pitch, Velocity”,
was developed in an environment called Max. Max is a graphical programming language
developed by Cycling’74 for working with MIDI based music. Max was a great thing for
this project because it comes packaged with objects to deal with most of the low-level
issues like interfacing with MIDI and creating metronome clock signals. Max also
includes many probabilistic functions, which became key elements of MLMPV. There
are some limits to Max, such as its inability to perform some types of recursive
computations, but most were overcome without much difficulty. The “out-of-the-box”
functionalities of Max allowed more time to be spent on the design and implementation
of the algorithm.

1 Chong Yu’s thesis is available at http://brainop.media.mit.edu/online/net-music/net-
instrument/Thesis.html
2 Sharle source code is available at http://home.comcast.net/~chtongyu/sharle/
3 David Cope’s work and biography are available at http://arts.ucsc.edu/faculty/cope/

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 3

2. Development
MLMPV was developed in stages. Each stage built upon the previous and added new
functionality or design improvements. The name of each stage’s patch refers to what
functionalities the patch implements.

2.1 Duel-Basic
See Also: Figure A-2.1, Audio CD Track 1

This was the first patch created for the project. Its title comes from the fact that there are
two concurrent musical lines “dueling” with only “basic” probabilistic algorithms used.
The patch was meant to provide the basic structure for building the algorithm. It simply
creates a sequence of notes at a random pitch anywhere in the full MIDI range, a
completely random velocity anywhere in the full MIDI range, and a duration less than
250 milliseconds. As soon as one note finishes playing, a new note is generated. The
“music” produced is completely atonal, has no sense of rhythm whatsoever, and features
huge jumps in pitch that are most unmusical.

2.2 Duel-Metro
See Also: Figures A-2.2 and A-2.3, Audio CD Track 2

In order to make the music slightly more rhythmical, it was obvious that a metronome
needed to be implemented. The "Advanced Metronome" (advmetro) was created to time
different note types simultaneously and synchronously. It uses Max’s tempo object to
produce 16 “bangs” - which are Max’s “go” signals - per beat. The “bangs” are counted
by counter objects set to different maximum counts to produce a measure count, a half
note count, a quarter note count, an eighth note count, and a sixteenth note count all
synchronized to the same metronome signal. All the counts, except the measure count,
are relative to the current measure beats. For example, there are 16 sixteenth notes in a
measure, so the sixteenth note counter counts from 1 to 16, then starts back at 1 again.
The measure counter counts the number of measures since the advmetro was started or
reset. Each count is sent out of the advmetro object through its own outlet and is also
connected to variable names using Max’s send object. This way, it is possible to
synchronize the entire patch without needing to connect back to the advmetro object each
time a clock signal is required.

Duel-Metro uses the advmetro to trigger the end of a playing note. This is a significant
feature, because it forces the system to stay in predictable 4/4 time. If notes were simply
given a duration, there is a fairly good chance that rhythms would not line up to with
measures or phrases. For instance, it would be possible to play a half note followed by a
triplet followed by a half note, which would not make very much musical sense. By
selecting when the end of the note occurs, the same scenario would be immediately
forced back into 4/4 rhythms. For example, if a half note were to be followed by a triplet,
everything would sound normal. If the system then selected a half note to follow the
triplet, what would actually play would be a note with length equivalent to 1 2/3 beats.
This happens because the end of the note would be triggered by the next half note event

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 4

produced by advmetro, which occurs at the beginning of the next measure, 1 2/3 beats
away. Any notes following the second half note will line up with the beginning of the
measure perfectly.

Because advmetro is based in 4/4 time, the music actually takes on 4/4 characteristics
because of the way note events are distributed within a measure. For instance, there is a
100% chance that there will be a note started on the first beat of a measure because every
type of note has an advmetro event at that time. The advmetro event will trigger the end
of all notes playing, which will cause a new note to start immediately. This observation
can be applied to every part of every beat in the measure.

Beat 1 1 1/4 1 1/3 1 1/2 1 2/3 2 2 1/4 2 1/3 2 1/2 2 2/3

Notes
Playing

1/4,
1/3,
1/2,
1,
2,
4

1/4 1/3 1/4,
1/2 1/3

1/4,
1/3,
1/2,
1

1/4 1/3 1/4,
1/2 1/3

Probability
of event
(notes/6)

100% 16.6% 16.6% 33.3% 16.6% 66.6% 16.6% 16.6% 33.3% 16.6%

Beat 3 3 1/4 3 1/3 3 1/2 3 2/3 4 4 1/4 4 1/3 4 1/2 4 2/3

Notes
Playing

1/4,
1/3,
1/2,
1,
2

1/4 1/3 1/4,
1/2 1/3

1/4,
1/3,
1/2,
1

1/4 1/3 1/4,
1/2 1/3

Probability
of event
(notes/6)

83.3% 16.6% 16.6% 33.3% 16.6% 66.6% 16.6% 16.6% 33.3% 16.6%

Notice the close correlation between dominant beats and high probabilities. This pattern
still applies if expanded to larger and smaller duration increments, such as 1/32 notes or 4
bar phrases. This shows that although the selection of duration is random, it is likely to
produce a fairly pleasing rhythm, thus validating this method of duration selection.

Duel-Metro plays three musical lines simultaneously and removes some of the
randomness that was observed to be so unmusical in Duel-Basic. Each of Duel-Metro’s
three lines produces a completely random pitch, but that pitch is limited to a single given
octave. All velocities are also randomly distributed, but all velocities generated are
greater than 50 to prevent major jumps in volume. The selection of which advmetro
event used to trigger the end of a playing note is also completely random, but as stated
previously, this approach works well. The music produced by Duel-Metro is completely
atonal and still has some wild volume variations, but the rhythm is what one would
expect in a 4/4 piece.

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 5

2.3 Multi-Line-Metro
See Also: Figures A-2.4 and A-2.5, Audio CD Track 3

This patch is basically an improved version of Duel-Metro. The first major difference is
advmetro’s ability to trigger triplets in addition to its previous capabilities. This is
achieved by having advmetro’s tempo object pump out 48 bangs per beat instead of 16
and adjusting the counters accordingly. The algorithms responsible for actually
generating and playing the notes were placed into a subroutine, called randline, which
made it much easier to modify and duplicate them. Multi-Line-Metro plays four musical
lines at a time with the same musical qualities - or lack there of - as Duel-Metro. This
patch’s main benefit is the ability to easily add and reconfigure additional randomly
generated playback lines.

2.4 Multi-Line-Metro2
See Also: Figure A-2.6 and A-2.7, Audio CD Track 4

This patch addresses some of Multi-Line-Metro’s shortcomings. It was obvious that the
bass notes should not be playing rhythms containing triplets or sixteenth notes. To
remedy this, the “rhythm complexity” setting was added to the randline subroutine. The
rhythm complexity setting simply controls the number of different note types that are
allowed for a given line. For example, a line with rhythm complexity set to 1 would only
have quarter notes and half notes. A line with a rhythm complexity of 4 has all five types
of notes available for random selection. This patch also has the ability to turn lines on
and off in a way that creates a call and response effect. This is done by toggling two lines
at a time. Simple randomness still determines the pitches and velocities.

2.5 Multi-Line-Metro-Pitch
See Also: Figures A-2.8 through A-2.11, Audio CD Track 5

This is where things start to sound musical. The Multi-Line-Metro-Pitch patch includes a
subroutine called pitchselect, which calls a subroutine called pitchselect2, to select
pitches to play. The pitchselect subroutine simply does some math on the pitches coming
out of pitchselect2 to make them fit into the proper range. This is important, because
pitchselect2 only works on one octave. The pitchselect subroutine allows for much
greater flexibility by automatically transposing pitches to their proper octave. The
pitchselect2 subroutine uses two lookup tables containing the probability of each note’s
occurrence. The tables only encompass one octave, starting at the lowest C (MIDI pitch
0) extending to the lowest B (MIDI pitch 11). The tables were developed by simple
experimentation, then hard-coded into the patch. Once a key and scale type are selected,
a separate note probability table is filled with note probabilities related to the scale
selected. This is achieved by simply copying the probability for each related scale degree
from the lookup table into the note probability table. When pitchselect2 is then asked to
select a pitch, the note probability table is simply queried and a value is returned.

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 6

The note coming out of the table might not be the note that is played, however, as there is
another test within pitchselect2 to make sure that the note is not just in key, but makes
musical sense with respect to the movement of the line. To reduce random sounding
jumps, minimum and maximum note movement settings were added. To make this work,
each note that is selected is stored until the next note selected replaces it. Each note
coming out of the note probability table is checked against the last note selected to make
sure that it is at least as far away from that note as the specified minimum note
movement, but no further than the maximum note movement. If the note coming out of
the table meets both requirements, it is allowed to pass through and is stored to compare
to the next note. If the note does not meet the requirements, it is discarded and the table
is queried again recursively. Despite Max’s limitations in its recursive functionality, this
method is able to produce a note every 10ms without issue, which is more than enough
speed for this application.

Multi-Line-Metro-Pitch also has functionality to automatically trigger the call and
response toggles. A random number is generated at the beginning of each measure. If
the number is 1, 2, or 3 then one of the three toggles will be triggered, which in turn will
change the combination of which lines are playing. The music produced by Multi-Line-
Metro-Pitch is tonal within a given key and includes the advanced 4/4 rhythms developed
by adding triplets to the list of duration choices. The addition of automated line toggling
makes the music significantly more interesting to listen to.

2.6 Multi-Line-Metro-Pitch-Velo
See Also: Figures A-2.12 through A-2.14, Audio CD Track 6

This patch is where the MLMPV system begins to come together and produce musical
results. The basic functionality is identical to Muilti-Line-Metro-Pitch, but this patch
adds the veloselect subroutine to select velocities, instead of the completely random
approach used in all previous patches. The first implementation of veloselect simply
selected a velocity based on which of the advmetro events happened last. This quickly
proved to be a poor method. Velocities were not being selected correctly at times where
more than one event occurred simultaneously. When the system was working as
designed, it was clear that the velocities needed to have more variation between beats of
the same type. For instance, if four sixteenth notes were played consecutively, the
second and fourth would be guaranteed to have exactly the same velocity. To correct
these issues, velocities are selected by the actual count associated with each note type, not
just the fact that there was an event. In this way, certain events that happen
simultaneously with others can be filtered out or ignored, and each occurrence of a
certain type of note within a measure can have a different velocity associated with it. For
instance, on the first beat of the measure every note type triggers an event, but only the
one coming from the measure counter is important. The signal from the measure counter
will cause the appropriate velocity to be set and the value from all other counters, which
are all “1” at this time, will be ignored. The second sixteenth note occurring in a measure
can, and does, have a different velocity value associated with it than the fourth sixteenth
note. This selection process fills in a major part of the musical flow by adding
expressiveness to the music.

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 7

3. Conclusion
The MLMPV system demonstrates many musical elements, but it clearly cannot do
everything a human composer could. MLMPV is capable of selecting pitches in key,
playing them in 4/4 time, and playing with proper volume depending on the current
position within a measure. MLMPV is not capable of consistently creating catchy
melodies nor can it perform any sort of repetition purposefully. It is it unable to produce
music containing rests or any sort of purposeful change in style. What MLMPV
produces is consistent with many important parts of music theory, but it never bends the
rules it has been given, so there is little chance that MLMPV will develop any new
musical concepts on its own.

Although MLMPV is limited in its functionality, it demonstrates many ways to use
simple computerized algorithms in music creation. Its design is such that there is room
for expansion to include new musical elements. MLMPV demonstrates that musical
rules can be turned into algorithms which a computer can run through to make a song.
As more features were added to MLMPV, it became apparent that as more rules were
added to the system a more musical sound was produced. To improve upon MLMPV,
simply add more rules. Unfortunately, time constraints prohibited the addition of features
such as rests and pauses, creation of musical beginnings and endings to the song, melody
writing, repetition, automatic and musical key changes, the ability to make separate lines
affect each other, and many others. Each of these elements has an infinite number of
possible algorithmic solutions, any of which could be added to MLMPV as a new
algorithmic rule.

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 8

A-1. Key Terms Explained
Max - The software these programs are written in. Created by Cycling'74. It is a

graphical programming language focused on music.

MIDI - Musical Instrument Digital Interface. MIDI is a communications protocol for

talking about music. It is event based, so no sound is actually transmitted, just
commands to start, end, or alter notes. There are many other commands MIDI
is capable of, but they do not pertain to this project

Patch or Patcher - This is what the Max folks call the programs written in their

software. There are 2 different types of patches:

Program Patch - These patches are implementations of an algorithm. They create
music (though possibly not good music).

Helper Patch - These patches generally do not do anything on their own, but

their functionality can be added to program patches or helper patches quite
easily. They are separated out for reuse or to keep a program patch a little
cleaner looking. Usually, they will require additional information or
stimulation to do their job.

Velocity - This is a MIDI word. It is a measure of how hard a note is struck. It usually

corresponds directly to the volume the note is played with, and sometimes
some other musical elements. Velocities range from 0 to 127, 1 being softest,
and 127 being hardest. A velocity of "0" will cause a note to stop playing.

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 9

A-2. Max Patch Diagrams

A-2.1 Duel-Basic

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 10

A-2.2 advmetro

A-2.2.1 Without Triplets

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 11

A-2.2.2 With Triplets

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 12

A-2.3 Duel-Metro

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 13

A-2.4 randline – as used in Multi-Line-Metro

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 14

A-2.5 Multi-Line-Metro

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 15

A-2.6 randline2 – as used in Multi-Line-Metro2

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 16

A-2.7 Multi-Line-Metro2

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 17

A-2.8 pitchselect

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 18

A-2.9 pitchselect2

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 19

A-2.9.1 Table major

A-2.9.2 Table minor

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 20

A-2.10 randline4 - as used in Multi-Line-Metro-Pitch

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 21

A-2.11 Multi-Line-Metro-Pitch

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 22

A-2.12 veloselect

A-2.12.1 Using Single Values for Each Event Type

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 23

A-2.12.2 Using Multiple Values for Each Event Type Based on Beat

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 24

A-2.13 randline6 - as used in Multi-Line-Metro-Pitch-Velo

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 25

A-2.14 Multi-Line-Metro-Pitch-Velo

 “Algorithmically Composed Music”
 James Cialdea, Jr.

 26

A-3. CD Contents

A-3.1 Audio CD
The audio CD includes a 5 minute sample of each patch’s functionality.

1. Duel-Basic Example
2. Duel-Metro Example
3. Multi-Line-Metro Example
4. Multi-Line-Metro2 Example
5. Multi-Line-Metro-Pitch Example (In G Minor)
6. Multi-Line-Metro-Pitch-Velo Example (In G Minor)

A-3.2 Data CD
The data CD includes all the audio samples listed above in MP3 and AIFF format,
sources for the Max patches used in their creation, and an electronic copy of this
document.

